Mercuric reductase. Purification and characterization of a transposon-encoded flavoprotein containing an oxidation-reduction-active disulfide.
نویسندگان
چکیده
The flavoprotein mercuric reductase catalyzes the two-electron reduction of mercuric ions to elemental mercury using NADPH as an electron donor. It has now been purified from Pseudomonas aeruginosa PAO9501 carrying the plasmid pVS1. In this plasmid system, where the mer operon is on the transposon Tn501, mercuric reductase comprises up to 6% of the soluble cellular protein upon induction with mercurials. The purification is a rapid (two-step), high yield (80%) procedure. Anaerobic titrations of mercuric reductase with dithionite revealed the formation of a charge transfer complex with an absorbance maximum around 540 nm. Striking spectroscopic similarities to lipoamide dehydrogenase and glutathione reductase were observed. These two enzymes, which catalyze the transfer of electrons between pyridine nucleotides and disulfides, are flavoproteins which contain an oxidation-reduction-active cysteine residue at the active site. The expectation that mercuric reductase contains a similar electron acceptor was confirmed when it was shown that mercuric reductase has the capacity to accept four electrons per FAD-containing subunit, and that two thiols become kinetically titrable by 5,5'-dithiobis-(2-nitrobenzoate) upon reduction with NADPH. These are characteristic features of the disulfide reductase class of flavoproteins. Further similarities with at least one of these enzymes, lipoamide dehydrogenase, include the E/EH2 midpoint potential (-269 mV), fluorescence properties, and extinction coefficients of E and EH2. Preliminary observations relevant to an understanding of the mechanism of mercuric reductase are discussed.
منابع مشابه
Coenzyme A disulfide reductase, the primary low molecular weight disulfide reductase from Staphylococcus aureus. Purification and characterization of the native enzyme.
The human pathogen Staphylococcus aureus does not utilize the glutathione thiol/disulfide redox system employed by eukaryotes and many bacteria. Instead, this organism produces CoA as its major low molecular weight thiol. We report the identification and purification of the disulfide reductase component of this thiol/disulfide redox system. Coenzyme A disulfide reductase (CoADR) catalyzes the s...
متن کاملPurification and characterization of cytosolic mercuric reductase from Klebsiella pneumoniae
Mercuric reductase, a cytosolic flavoprotein which catalyzes the NADPHdependent reduction of mercuric ion to metallic mercury, has been purified about 82-fold from Klebsiella pneumoniae cells and kinetic properties were investigated. The purification method consisted of rapid (two-step) and straightforward procedure involving dye matrix affinity chromatography. The freshly native protein exhibi...
متن کاملIsolation and characterization of mercuric reductase by newly isolated halophilic bacterium, Bacillus firmus MN8
The current study was aimed at isolating and identifying the halophilic and halotolerant bacteria which can produce mercuric reductase in Gavkhuni wetland in Iran. Moreover, tracking and sequencing merA gene and kinetic properties of mercuric reductase in the selected strain were performed in this study. Soil samples were taken from Gavkhuni wetland and cultured in nutrient agar medium...
متن کاملMolecular basis of bacterial resistance to organomercurial and inorganic mercuric salts.
Bacteria mediate resistance to organomercurial and inorganic mercuric salts by metabolic conversion to nontoxic elemental mercury, Hg(0). The genes responsible for mercury resistance are organized in the mer operon, and such operons are often found in plasmids that also bear drug resistance determinants. We have subcloned three of these mer genes, merR, merB, and merA, and have studied their pr...
متن کاملPurification and analysis of a flavoprotein functional as NADH oxidase from Amphibacillus xylanus overexpressed in Escherichia coli.
The gene encoding the Amphibacillus xylanus flavoprotein has been cloned into pTTQ18 and overexpressed in Escherichia coli. The recombinant enzyme has been purified to homogeneity yielding 15 mg of pure enzyme/liter of cell culture. Recombinant flavoprotein is fully active and has an absorption spectrum identical to that of the enzyme purified from A. xylanus. The N-terminal sequence analysis a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 257 5 شماره
صفحات -
تاریخ انتشار 1982